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For the extended Bloch-type model of the NMR laser a binary partition is determined from tangencies
between forward and backward foliations. It is found that both forward and backward symbolic se-
quences are ordered as those of the Hénon map with a positive Jacobian. From a finite set of tangencies,
new admissible periods are obtained, among which some were regarded as forbidden. A method to con-

struct allowed chaotic sequences is also given.

PACS number(s): 05.45.+b

Symbolic dynamics of one-dimensional maps on an in-
terval is well understood [1,2]. For the simplest case of
the unimodal map, a binary generating partition may be
introduced by splitting the interval at the critical point.
An orbit can then be encoded with a symbolic sequence
by assigning either letter R or L to an orbit point, de-
pending on whether it falls to the right or left side of the
critical point, respectively. The kneading sequence,
which is the forward sequence of the critical value, deter-
mines all the admissible sequences of the map. Accord-
ing to the kneading theory, all sequences are well or-
dered. The kneading sequence is the greatest. No al-
lowed sequence would contain any shifted subsequence
greater than the kneading sequence.

The extension of the symbolic dynamics of the unimo-
dal map to that of the two-dimensional Hénon map [3]
(x,y)—(1—ax?+by,x) is by no means trivial. The first
problem is to construct a “good” binary partition for this
system. In Ref. [4], by considering all “primary” homo-
clinic tangencies, a method was proposed. Once the
binary partition is practically determined, each point, or
its orbit, may be associated with a doubly infinite symbol-
ic sequence [5] S=...s557@s0S;. .., where s, indicates
the code of the point. The forward sequence ®sys;. ..
and backward sequence .. .s;s;@® correspond to its for-
ward and backward orbits, respectively. In Ref. [5] the
ordering rules for forward and backward sequences were
discussed, and the symbolic plane for a metric representa-
tion of the ordering was constructed. It was pointed out
that every primary homoclinic tangency cuts out a rec-
tangle of forbidden sequences in the symbolic plane. By
generalizing stable and unstable manifolds to forward and
backward foliations [6,7], homoclinic tangencies can be
generalized to tangencies between the two classes of folia-
tions [8].

Symbolic dynamics of maps can be applied to the study
of differential equations by considering the Poincaré map
in a surface of intersection. In Ref. [9] kneading se-
quences of the unimodal map were identified to some
stable periodic orbits of the forced Brusselator. The
Lorenz model was discovered to be related to the symbol-
ic dynamics of the antisymmetric cubic map [10]. In
these two examples only the symbolic description of one-
dimensional (1D) maps was experimentally used for
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stable periodic orbits. Recently, in Ref. [11], a two-
dimensional (2D) symbolic description was proposed for
the model of NMR-laser chaos, the following extended
Bloch-type laser (EBL) model:

x=c[y—x/(14+ A4 coswt)] ,
y=—y(l+ay)+rx—xz , (1)
z=—bz+xy .

The meaning of the variables x,y,z, and the parameters
o, A, o, a, r, and b can be found in their papers. A
binary generating partition was approximately obtained
from some unstable orbits up to period 9. However, the
ordering rules of forward and backward sequences as well
as the admissibility conditions for allowed sequences have
not been touched. In this Brief Report we present a full
analysis of symbolic dynamics for the EBL model.

The extension of symbolic dynamics of maps from 1D
to 2D is made by decomposing a 2D map into two 1D
maps. The coupling is described by the pruning front or
the symbolic representation of the partition line. Since
an attractor is only related to backward foliations, which
are the generalization of unstable manifolds, forward foli-
ations were not considered in Ref. [11]. In order to deter-
mine a partition line more accurately we directly search
for tangencies between forward and backward foliations.
The way to determine the tangent direction of a point on
a foliation is simple. Take the given point as an end point
of an orbit. At some point on the orbit we pick up a rath-
er arbitrary direction, which will map to some direction
at the end point. If we fix the end point and increase the
length of the orbit, due to the instability of the dynamics,
the final direction will usually converge to a certain direc-
tion, which is the unstable or backward direction of the
given point [6]. A backward foliation is an integral curve
of the field of such directions. A forward direction and
forward foliation can be determined similarly [7]. The
technical details will be presented elsewhere [12]. For the
parameters o=4.875, A=0.018, »=0.03168,
a =0.2621, r=1.807, and b=0.0002, as given in Ref.
[11], the obtained partition line is shown in Fig. 1. The
Poincaré section is constructed at t =2m(n +77/256)/w
in the y-z plane.

It was claimed that the partition for the EBL model is
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FIG. 1. The partition line ( AB) in the y-z plane determined
from tangencies between forward and backward foliations
divides the plane into two parts marked R and L. Phase offset
777w /128w is taken for the Poincaré section. Here the variables
y and z have been scaled with y*=VvV'b(r —1) and z*=r — 1, re-
spectively. A part of the attractor is also shown.

binary [11]. This is also verified by tangencies of folia-
tions. The symbolic dynamics of the Hénon map is
known to be binary. Poincaré maps of differential sys-
tems usually have a positive Jacobian. We find that the
ordering rules of forward and backward sequences for the
EBL model coincide with those for the Hénon map with
a positive Jacobian. They are

®ER... >®EL. . .,
...REe>.. . LEe,

OOR...<@0OL... ;
...ROe<...LOe,

(2)

where finite strings E and O consist of letters R and L,
and contain an even and odd number of letter R, respec-
tively. Relations (2) can be understood from the “local”
ordering that both eigenvalues of the fixed point R ® (and
L *) for the Hénon map with a positive Jacobian are neg-
ative (and positive). From the ordering rules the greatest
|
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FIG. 2. The partition line constructed in a larger region of
the phase space (cf. Fig. 1).

backward sequence is L “R@®. However, in Ref. [11] the
greatest backward sequence seen for the given parameters
was not greater than (RLR )*@®. We then search a larger
region (beyond L°R@) of the phase space for more
tangencies and construct a more complete partition line,
which is shown in Fig. 2.

Since foliations are well ordered, the geometry of a
tangency places a restriction on allowed symbolic se-
quences. A point of tangency on the partition line C®
may symbolically be represented as QC®P. The sequence
UV where U® is between QR® and QLe®, and @V > @P
must be forbidden by the tangency QC@P. (This is the
meaning of a pruning or forbidden rectangle in the sym-
bolic plane [5,13].) Consider a finite set of tangencies
{Q;CeoP;}. If the shift of a sequence . ..s; _ @S S 1. - -
satisfies the condition that the backward sequence
.« .S; 25, —1®is not between Q;R@® and Q;L @, and at the
same time @P; > @s;5; ;. . . for some i, then this shift is
not forbidden by any tangencies due to the property of
well ordering of foliations. Thus we may say that the
shift is allowed according to the tangency. If all shifts of
the sequence are allowed according to the set of tangen-
cies, then the sequence is admissible.

We select the following finite tangencies:

1: ...LRRRLLLLLLRRLLLLRCORRLLRLLRRLRLRRLRLR...

@ X x0 H w D

We have examined 15 orbits up to period 9 found in Ref.
[11]. They are indeed allowed by the set of tangencies.
Among sequences up to order 9 smaller than RLC in the
so-called MSS (Metropolis, Stein, and Stein) U sequence,
four periods, three orbits of period 9, and one period 7

.LLLLLLRRLLLLRLLLRCORRRRRRLRRLRLRRLRRR. ..
..LLRRLLLLRLLRLRRLRCORLRRRLRRRLRLRLRRRL. ..
..RLRLRLRLRLRLRRRLRCORLRRRLRLRLRRRLRRRL...
..LLLLRRLLLLLRRLRRRCORLRRRRLRLRLRLRLRILR...
..RRRLRRLRLRRLRLRRRCORLRRRRLRRLRLRLRLRR...
..RRLLLLLRLLRRLRLRRCORLRRLRRLRLRRRRRLRR. ..
..RRRLLLLLLRRLLLLRILCORLLRLRRLRLRRLRRRRL. ..

[
are forbidden. However, two orbits of period 8,
(RLRRLRRL)® and (RLRRLRRR)®, not in the above-
mentioned 15 orbits, are also allowed. Contrary to the
conclusion made in Ref. [11], periods (RLL)<,
(RLLRLR)®, (RLLRLRRLL)®, and (RLLRLRRLR)”
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are allowed. In fact, there are more allowed orbits, e.g.,
(RLLR)*® and (RLLL)>, but to verify their admissibili-
ty, more tangencies must be considered. For all the in-
ferred allowed sequences, we have numerically found
their orbits in phase space, using the ordering of folia-
tions to choose initial values for the Newton method of
iteration. So far we have mentioned only periodic orbits.
We may further construct allowed chaotic sequences
based on the set of tangencies. For example, it can be
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verified that any sequences consisting of only the seg-
ments RLR’L and R°L are always allowed. A more de-
tailed characterization of the symbolic dynamics for the
EBL model, including the symbolic analysis of crisis, will
be presented elsewhere [12].
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